

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

1

Abstract — It has been over 10 years since the first iteration of

Software Communication Architecture (SCA) and more than 5

years since the release of the previous version of the specification,

SCA 2.2.2. While there have been numerous technological

advancements and lessons learned in the field of software defined

radio (SDR) since the release of SCA 2.2.2, the framework

remained relatively static and was extended to include a small

subset of the new features. The latest specification release,

commonly known as SCA4, significantly optimizes the

framework and improves a programmer’s ability to develop

software defined radios efficiently. The new standard builds on a

decade of expertise and makes the SCA even more relevant in

today’s market of resource constrained systems with the ever

increasing need for secure mobile communications. With the

breadth of potential SCA based target platforms and

applications, SCA4 broadens its applicability beyond U.S.

military software defined radios.

Index Terms—[SCA, SDR, JTRS, Android]

I. INTRODUCTION

HE SCA is an open-architecture specification that

defines the interactions between software applications and

hardware platforms. In Joint Tactical Radio System (JTRS)

systems, these software applications are waveforms and the

hardware platforms are radios. The SCA framework has

guided the development and evolution of the software defined

radio domain and its concepts have been used within multiple

industries, products and countries beyond the US DoD

community.

A primary goal of military software defined radios is to

minimize the amount of effort required to port waveform

applications to different radio platforms – the SCA establishes

the infrastructure to achieve this objective. As illustrated in

Figure 1, an SCA-based software defined radio provides a

standardized infrastructure for software deployment and

configuration; while ensuring interoperability between SCA-

based products. SCA components may be extended by the

JTRS Application Program Interfaces (APIs)i to provide

platform specific capabilities. The SCA and JTRS APIs

promote waveform portability and reuse by isolating the

waveform application from the radio set.

The modular nature of SCA4 builds in flexibility for the

evolution of the standard and SCA-compliant products as

technology and requirements change. This newest framework

emphasizes flexibility & scalability throughout the

specification. From a system developer perspective, the

flexibility can be used to innovate and provide solutions which

are appropriately tailored to a particular product. For the radio

user, the flexibility permits customization and extension of the

features and capabilities of the original product.

II. PUSH MODEL

The SCA was originally developed with a client-side „pull‟

design pattern which required a multi-step approach to deploy

components in the domain. In SCA 2.2.2 application

components register with the naming service upon entry to the

domain and then the ApplicationFactory queries the naming

service to discover when application components became

available. Only after the components have registered can the

ApplicationFactory continue the deployment process. SCA4

no longer uses a vulnerable naming service and instead

maintains knowledge of system components within the

domain and replaces the registration process with a „push‟

model approach, in which an application component is

provided access to an instantiation of the standalone

ComponentRegistry interface that is associated with an

ApplicationFactoryComponent. An application component

registers with the ComponentRegistry instantiation and

provides all of its information upfront with a single call. This

change in the interaction model can achieve real reductions on

boot-up time, perhaps a 50% decrease. An additional „push

model‟ benefit is that, unlike the „pull‟ model approach, it

does not allow access to vulnerable system data and

eliminates the possibility of clients requesting information

they should not have.

III. SCA PORT CONNECTIONS

A component architecture identifies endpoints or

connection points between the individual software

components of a software infrastructure or application.

Within SCA, these endpoints are referred to as ports which are

SCA4 – An Evolved Framework

Chalena M. Jimenez, Kevin W. Richardson, and Donald R. Stephens

Joint Tactical Radio System

T

Figure 1 Architecture of SCA-Enabled Radio

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

2

similar to a socket connection in a hardware domain.

Illustrated in Figure 2, an SCA port is a software address that

represents a connection point for a component.

Figure 2 SCA Ports are addresses

Associated with a port is an interface (which can be an

individual interface or an aggregation of interfaces) as

illustrated in Figure 3. Knowledge of the address itself is

insufficient – the communicating component must have

knowledge of the interface. In SCA4, that information is

provided in XML files for every component within the system.

The specific system architecture determines whether the

information is publicly accessible or whether communicating

components must know the interface a priori.

Figure 3 SCA Ports have an associated interface

SCA4 introduces a new static ports feature. Static ports

allow for an implementation specific approach to connection

establishment. Connections can be formed in an efficient

manner at run time or at build time by providing a static

predefined address for the connection. The impact of static

ports is minimal for applications with a limited number of

ports, but the capability will result in substantially more

savings for systems with applications that require hundreds of

port connections.

IV. OPTIONAL INHERITANCE

JTRS SCA-based products support a vast range of

functionality and features. The original SCA defines a fairly

rigid infrastructure which has been successfully implemented

and deployed in software defined radios today. SCA4

augments the current capabilities by providing those

infrastructures with the ability to be reconfigured such that

they better align with the maintenance and development needs

of existing and future software defined radios. The

configurability is realized through interface changes, the

majority of which are not significant departures from their

earlier counterparts yet they represent essential elements of a

more adaptive architecture. The potential impact of modifying

the existing interfaces was considered during the development

process, and a determination was made that the benefits

outweighed the cost. The development of fairly simplistic

tools could offset the costs associated with migrating to the

new interfaces by providing an offline translation service to

align existing SCA products with the new interfaces.

Figure 4 depicts how the DomainManager interface

changed between SCA 2.2.2 and SCA4. The majority of the

operations and attributes maintain a one-to-one mapping

between the versions, specifically items 1-3 and 6-7. The

interface change introduces a least privilege pattern at the

framework level. The use of this pattern provides the designer

with a bevy of alternatives in terms of how one lays-out the

components within their system and makes information

available to external agents. For example, the registration

methods were moved into new standalone interfaces, indicated

by items 4 and 5. The introduction of these new interfaces

provides a clean, standardized method that allows the product

developer to make and implement an engineering decision

based upon whether or not external clients will need to register

with this domain manager.

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

3

Figure 4 DomainManager Interface Transformation

Previously, the developer was required to implement all of

an interface‟s inherited interfaces even though they all may

not have been necessary. For example, an SCA 2.2.2 Resource

interface inherits the TestableObject interface and needs to

implement the runTest operation regardless of whether or not

the component provides a test capability. SCA4 allows the

developer to only include the interfaces necessary for a

specific implementation, thus eliminating unused or

underutilized code. With SCA4, the developer would not have

to include TestableObject within the interface inheritance

hierarchy and not be required to implement a runTest

operation. SCA4 can lower the cost of software defined radios

with the new optional inheritance technology, which reduces

software development and maintenance effort and costs.

Optional inheritance is implemented in SCA4 via directives

in the Interface Definition Language (IDL) definitions. Each

directive is associated with a Unit of Functionality (UOF),

each of which contains a grouping of requirements that

provide a particular set of functionality. Figure 5 provides a

sample excerpt from the DeviceManager.idl and demonstrates

how the directives can be utilized in an implementation. In

this example, the Connectable UOF is enabled (i.e. via #define

CONNECTABLE) which results in the DeviceManager

interface extending the PortAccessor interface. The other

UOFs are not enabled and therefore the DeviceManager

interface would not extend any of the other optional interfaces

(i.e. PropertySet, ManagerRelease, and

DeviceManagerAttributes) indicated by grayed-out interfaces.

Optional inheritance‟s benefit is the reduction in the number

of applicable requirements; however one should not lose sight

of the fact that the savings associated with this feature are

distributed across the entire software development life cycle.

#

#

- No impact

- Refactored to support least
privileged

Key:

4

7
1

1

5

6

6

7

2

3

2

3

SCA 2.2.2 SCA 4.0

5

4

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

4

Figure 5 Optional Inheritance Directives Example

V. COMPONENT MODEL

SCA4 introduces a component model that benefits

specification users primarily from a system engineering

perspective. One of the comments targeted to earlier SCA

versions was that they were difficult to understand because

they only provided “interface centric” system views. The

component model addresses this concern by providing a clear

separation between interfaces (an element that defines “what”

needs to be done or “why” something needs to be done) and

components (a modular, replaceable part of a system within a

defined environment that encompasses both static and

dynamic behaviors or “how” something is done). A notional

representation of the hierarchy of the significant SCA

components is shown in Figure 6.

The introduction of the component model does not

introduce significant changes to the existing requirements set.

Many of the requirements in previous versions of the SCA

were behavior based requirements, i.e. requirements that went

beyond the interface level. These behavioral requirements

now appear in a corresponding SCA4 component definition.

An example of this would be the state transition requirements

that were previously in the Device interface are now located

within the DeviceComponent sections of SCA4. It is

important that the distinction between interface and behavioral

requirements be made more evident – this adds usability to the

SCA without incurring great cost on the developer side.

The incorporation of components provides a concrete bridge

from interface to implementation which will become even

more important as additional optional capabilities are

introduced into the specification. In addition, properly-

developed components will improve the prospect of enhanced

portability and reuse of detailed architectural artifacts.

#define CONNECTABLE

module CF {

interface DeviceManager : ComponentIdentifier

#if defined (CONNECTABLE)

,PortAccessor

#endif

#if defined (CONFIGURABLE)

,PropertySet

#endif

#if defined (MANAGEMENT_RELEASABLE)

,ManagerRelease

#endif

#if defined (INTERROGABLE)

,DeviceManagerAttributes

#endif

{

};

};

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

5

Figure 6 SCA Component Hierarchy – Significant Components

VI. EXPANDED FEATURES

SCA4 introduces an intra-application connection

mechanism that allows the framework to connect multiple

applications which may in turn share and exchange

information. This capability permits SCA-based software

defined radios and applications to support the deployment and

interconnection of tactical mobile apps, such as those found in

the U.S. Army‟s Marketplace, an Android-based app store.

The SCA4‟s new connectivity options are ideal for handling

communication to these external apps seamlessly via the

Android presentation layer.

SCA4 also provides leniency in that it no longer dictates the

use of a specific middleware technology, namely the Common

Object Request Broker Architecture (CORBA). CORBA is

still a viable alternative for SCA platforms and applications,

but the SCA4 provides mechanisms to extend the specification

with additional transfer mechanisms such as C++ RPC.

VII. COMPLIANCE TESTING

The JTRS Test & Evaluation Laboratory (JTEL) is the test

authority for Compliance Testing of the Software

Communications Architecture (SCA). JTEL performs its

compliance testing using a combination of manual processes

and an automated tool, the JTRS Test Application (JTAP). An

additional feature of the SCA4 specification development

process was the steps that were taken to shorten the overall

development life cycle by increasing the percentage of

automated tests.

Automated testability was expanded in SCA4 through a

combination of actions. A working group with JTEL

representation performed a detailed assessment of the

manually validated SCA 2.2.2 requirements. Once the test

method was confirmed the requirement was analyzed to

ensure that it was a relevant and necessary at the SCA level. If

the requirement was deemed non-essential then the text was

either removed or refactored to provide development

guidance. If considered necessary, the requirement was

evaluated to determine if it could be reworded to preserve the

original intent but made testable. As either existing

requirements were modified or new requirements inserted

within SCA4, the team reviewed each change to ensure that it

could be tested.

VIII. CONCLUSION

The intent of SCA4 is to enhance the framework‟s ability to

support program specific maintenance and development while

mitigating impact to outstanding platforms. SCA4 takes the

next step in streamlining the development and maintenance of

software defined radios all while promoting flexibility and

security as ingrained features. This newest standard, officially

versioned as SCA 4.0, was approved by the JTRS Interface

Control Working Group (ICWG) and the Wireless Innovation

Forum (WINNF) on February 28, 2012.

ApplicationComponent

ApplicationResourceComponent

AssemblyControllerComponent

ControllableComponent

ResourceComponent

Resource

AssemblyComponent

ApplicationManagerComponent

Application

ApplicationFactoryComponent

ApplicationFactory

ApplicationComponentFactoryComponent

ComponentFactoryComponent

ComponentFactory

PlatformComponentFactoryComponent

CF_Serv iceComponent

Serv iceComponent

PlatformComponent

ComponentBaseDev ice

CapacityManagement

DeviceAttributes

ManageableComponent

ParentDevice

ExecutableDev iceComponent

ExecutableDevice

LoadableDev iceComponent

LoadableDevice

Dev iceComponent

Device

Dev iceManagerComponent

DomainManagerComponent

Realizes

ComponentBase

Realizes

ComponentBase

Realizes

ComponentBase

ComponentBase

ComponentIdentifier

ControllableComponent

LifeCycle

PortAccessor

PropertySet

TestableObject

Realized interfaces

not-shown

AggregateDev iceComponent

AggregateDevice

ComponentManagerComponent

ComponentManager

FileComponent

File

FileManagerComponent

FileManager

FileSystemComponent

FileSystem

Realizes

ComponentFactory

Component

Key:
- Abstract Component

- Base Application Component

- CF Service Component - Framework Control Component

- Base Device Component

- Non-CF Service Component

- Common Base Component

DISTRIBUTION STATEMENT A

Approved for public release; distribution is unlimited (24 July 2012).

6

REFERENCES

[1] Software Communication Architecture, JPEO JTRS, 4.0, 2012,

http://jpeojtrs.mil/sca

i http://jpeojtrs.mil/sca/Pages/api.aspx

